A new and convenient synthetic way to 2-substituted thieno[2,3-b]indoles.

Beilstein J Org Chem

Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620990, Russia ; Ural Federal University named after the First President of Russia, B. N. Yeltsin, Ekaterinburg, 620002, Russia.

Published: July 2015

A short and robust approach for the synthesis of 2-(hetero)aryl substituted thieno[2,3-b]indoles from easily available 1-alkylisatins and acetylated (hetero)arenes has been advanced. The two-step procedure includes the "aldol-crotonic" type of condensation of the starting materials, followed by treatment of the intermediate 3-(2-oxo-2-(hetero)arylethylidene)indolin-2-ones with Lawesson's reagent. The latter process involves two sequential reactions, namely reduction of the C=C ethylidene double bond of the intermediate indolin-2-ones followed by the Paal-Knorr cyclization, thus affording tricyclic thieno[2,3-b]indoles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505097PMC
http://dx.doi.org/10.3762/bjoc.11.112DOI Listing

Publication Analysis

Top Keywords

convenient synthetic
4
synthetic 2-substituted
4
2-substituted thieno[23-b]indoles
4
thieno[23-b]indoles short
4
short robust
4
robust approach
4
approach synthesis
4
synthesis 2-heteroaryl
4
2-heteroaryl substituted
4
substituted thieno[23-b]indoles
4

Similar Publications

The Friedel-Crafts reaction has been extensively applied to the preparation of various porous organic polymers because of its simple operation and abundant building blocks. However, due to its poor reversibility and excessive random reactive sites, the synthesis of crystalline organic polymers/frameworks by Friedel-Crafts reaction has never been realized so far. Herein, we develop a molecular confined Friedel-Crafts reaction strategy to achieve rapid preparation (within only 30 minutes) of highly crystalline covalent triazine frameworks (CTFs) with tailorable functionality for the first time.

View Article and Find Full Text PDF

Background: Dental caries is one of the most common non-communicable diseases in humans. Various interventions are available for the management, of which microinvasive techniques such as infiltration, sealants, glass ionomers, are novel and convenient. The purpose of this systematic review and meta-analysis was to compare microinvasive techniques with noninvasive or invasive treatment modalities in terms of effectiveness in halting interproximal caries lesion progression radiographically assessed.

View Article and Find Full Text PDF

A highly practical Schiff base fluorescent probe, (E)-3-amino-N'-((7-(diethylamino)-2-oxo-2 H-chromen-3-yl)methylene)thiophene-2-carbohydrazide (M), with a facile synthetic route has been successfully developed. M has been utilized for the specific detection of Cu in THF/HO Tris buffer solution (v/v = 9:1, 0.01 M, pH = 7.

View Article and Find Full Text PDF

Herein, an efficient electrochemical three-component C-H functionalization of indoles with sodium bisulfite and alcohols is described, providing a sustainable and convenient synthetic route for the construction of structurally valuable indole-containing sulfonate esters in moderate to good yields. This protocol proceeds in an undivided cell without any metal catalysts or oxidants, features a broad substrate scope, and has an excellent functional group tolerance. Preliminary mechanistic studies suggest that a radical-radical pathway may be involved in this three-component reaction system.

View Article and Find Full Text PDF

PTSP-BERT: Predict the thermal stability of proteins using sequence-based bidirectional representations from transformer-embedded features.

Comput Biol Med

December 2024

College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Country Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, 610106, China.

Thermophilic proteins, mesophiles proteins and psychrophilic proteins have wide industrial applications, as enzymes with different optimal temperatures are often needed for different purposes. Convenient methods are needed to determine the optimal temperatures for proteins; however, laboratory methods for this purpose are time-consuming and laborious, and existing machine learning methods can only perform binary classification of thermophilic and non-thermophilic proteins, or psychrophilic and non-psychrophilic proteins. Here, we developed a deep learning model, PSTP-BERT, based on protein sequences that can directly perform Three classes identification of thermophilic, mesophilic, and psychrophilic proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!