A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A New Way of Sensing: Need-Based Activation of Antibiotic Resistance by a Flux-Sensing Mechanism. | LitMetric

Unlabelled: Sensing of and responding to environmental changes are of vital importance for microbial cells. Consequently, bacteria have evolved a plethora of signaling systems that usually sense biochemical cues either via direct ligand binding, thereby acting as "concentration sensors," or by responding to downstream effects on bacterial physiology, such as structural damage to the cell. Here, we describe a novel, alternative signaling mechanism that effectively implements a "flux sensor" to regulate antibiotic resistance. It relies on a sensory complex consisting of a histidine kinase and an ABC transporter, in which the transporter fulfills the dual role of both the sensor of the antibiotic and the mediator of resistance against it. Combining systems biological modeling with in vivo experimentation, we show that these systems in fact respond to changes in activity of individual resistance transporters rather than to changes in the antibiotic concentration. Our model shows that the cell thereby adjusts the rate of de novo transporter synthesis to precisely the level needed for protection. Such a flux-sensing mechanism may serve as a cost-efficient produce-to-demand strategy, controlling a widely conserved class of antibiotic resistance systems.

Importance: Bacteria have to be able to accurately perceive their environment to allow adaptation to changing conditions. This is usually accomplished by sensing the concentrations of beneficial or harmful substances or by measuring the effect of the prevailing conditions on the cell. Here we show the existence of a new way of sensing the environment, where the bacteria monitor the activity of an antibiotic resistance transporter. Such a "flux-sensing" mechanism allows the cell to detect its current capacity to deal with the antibiotic challenge and thus precisely respond to the need for more transporters. We propose that this is a cost-efficient way of regulating antibiotic resistance on demand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513084PMC
http://dx.doi.org/10.1128/mBio.00975-15DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
antibiotic
8
flux-sensing mechanism
8
resistance
7
sensing
4
sensing need-based
4
need-based activation
4
activation antibiotic
4
resistance flux-sensing
4
mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!