Effect of high hydrostatic pressure on the microbiological, biochemical characteristics of white shrimp Litopenaeus vannamei.

Food Sci Technol Int

College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, China

Published: June 2016

Using thermal processing (TP) treatment (100 ℃, 1-8 min) as a control, the effects of high hydrostatic pressure (HHP, 200-500 MPa, 2.5-20 min) on the microbiological and biochemical characteristics of white shrimp Litopenaeus vannamei were investigated. The results showed that the efficiency of polyphenol oxidase (PPO) inactivation and log reduction of total plate count (TPC) by HHP treatment were all significantly lower than by TP treatment (p < 0.05). The rate of inactivation for TPC and PPO all increased with the increase of HHP pressure and holding time (p < 0.05). The inactivation of PPO was in accordance with a first-order kinetics with the HHP treating time. Hardness of HHP-treated samples at the pressure of 300-500 MPa was higher than TP-treated samples, while the yield loss of HHP treatment was significantly lower than with TP treatment (p < 0.05), long time and high pressure of HHP treatment turned the appearance of shrimps slightly pink.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1082013215596650DOI Listing

Publication Analysis

Top Keywords

high hydrostatic
8
hydrostatic pressure
8
microbiological biochemical
8
biochemical characteristics
8
characteristics white
8
white shrimp
8
shrimp litopenaeus
8
litopenaeus vannamei
8
pressure microbiological
4
vannamei thermal
4

Similar Publications

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.

View Article and Find Full Text PDF

Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products.

Food Res Int

January 2025

Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye. Electronic address:

Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!