RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that Escherichia coli cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate trans-translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.000144 | DOI Listing |
Exp Neurol
December 2024
Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland. Electronic address:
tRNA-derived stress-induced RNAs (tiRNAs) are a new class of small non-coding RNA that have emerged as important regulators of cellular stress responses. tiRNAs are derived from specific tRNA cleavage by the stress-induced ribonuclease angiogenin (ANG). Loss-of-function mutations in the ANG gene are linked to amyotrophic lateral sclerosis (ALS), and elevated levels of specific tiRNAs were recently identified in ALS patient serum samples.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
Despite interest in developing therapeutics that leverage binding pockets in structured RNAs-whose dysregulation leads to diseases-such drug discovery efforts are limited. Here, we have used a small molecule microarray (SMM) screen to find inhibitors of a large ribozyme: the Methanobrevibacter smithii RNase P RNA (Msm RPR, ∼300 nt). The ribonucleoprotein form of RNase P, which catalyzes the 5'-maturation of precursor tRNAs, is a suitable drug target as it is essential, structurally diverse across life domains, and present in low copy.
View Article and Find Full Text PDFFront Genet
November 2024
Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China.
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary.
View Article and Find Full Text PDFAngiogenin (Ang), an endoribonuclease belonging to the RNase A superfamily, cleaves the anticodon-loops of tRNAs to produce tRNA half molecules. Although previous studies have demonstrated the involvement of Ang in the pathobiology of neurodegenerative disorders, the characterization of Ang-generated tRNA halves in neuronal cells remains limited. This is partly due to the technical limitations of standard RNA-seq methods, which cannot capture Ang-generated RNAs containing a 2',3'-cyclic phosphate (cP).
View Article and Find Full Text PDFNat Commun
December 2024
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen Straße 25, 81377, Munich, Germany.
Human Schlafen 11 (SLFN11) is sensitizing cells to DNA damaging agents by irreversibly blocking stalled replication forks, making it a potential predictive biomarker in chemotherapy. Furthermore, SLFN11 acts as a pattern recognition receptor for single-stranded DNA (ssDNA) and functions as an antiviral restriction factor, targeting translation in a codon-usage-dependent manner through its endoribonuclease activity. However, the regulation of the various SLFN11 functions and enzymatic activities remains enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!