Metastatic progression is the major cause of breast cancer-related mortality. By examining multiple syngeneic preclinical breast cancer models in mice lacking a functional type-I interferon receptor (Ifnar1(-/-) mice), we show that host-derived type-I interferon (IFN) signaling is a critical determinant of metastatic spread that is independent of primary tumor growth. In particular, we show that bone metastasis can be accelerated in Balb/c Ifnar1(-/-) mice bearing either 4T1 or 66cl4 orthotopic tumors and, for the first time, present data showing the development of bone metastasis in the C57Bl/6 spontaneous MMTV-PyMT-driven model of tumorigenesis. Further exploration of these results revealed that endogenous type-I IFN signaling to the host hematopoietic system is a key determinant of metastasis-free survival and critical to the responsiveness of the circulating natural killer (NK)-cell population. We find that in vivo-stimulated NK cells derived from wild-type, but not Ifnar1(-/-), mice can eliminate the 4T1 and 66cl4 breast tumor lines with varying kinetics in vitro. Together, this study indicates that the dysregulated immunity resulting from a loss of host type-I IFN signaling is sufficient to drive metastasis, and provides a rationale for targeting the endogenous type-I IFN pathway as an antimetastatic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-15-0065DOI Listing

Publication Analysis

Top Keywords

type-i ifn
16
ifn signaling
16
ifnar1-/- mice
12
loss host
8
host type-i
8
breast cancer
8
type-i interferon
8
bone metastasis
8
4t1 66cl4
8
endogenous type-i
8

Similar Publications

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

Rationale: Current research on antiviral treatment in children is relatively limited, especially in children under 1 year old.

Patient Concerns: Liu XX, an 8-month-old infant (case number: 3001120473), presented to the hospital in August 2016 with a chief complaint of being "hepatitis B surface antigen positive for 8 months and experiencing abnormal liver function for 5 months."

Diagnoses: The patient was diagnosed as chronic hepatitis B cirrhosis (G3S3-4) with active compensatory phase.

View Article and Find Full Text PDF

Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.

View Article and Find Full Text PDF

Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.

View Article and Find Full Text PDF

Xalnesiran with or without an Immunomodulator in Chronic Hepatitis B.

N Engl J Med

December 2024

From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).

Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.

Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!