Genomic imprinting disorders often exhibit delayed neurobehavioral development, suggesting this unique mechanism of epigenetic regulation plays a role in mental and neurological health. While major errors in imprinting have been linked to adverse health outcomes, there has been little research conducted on how moderate variability in imprinted gene expression within a population contributes to differences in neurobehavioral outcomes, particularly at birth. Here, we profiled the expression of 108 known and putative imprinted genes in human placenta samples from 615 infants assessed by the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). Data reduction identified 10 genes (DLX5, DHCR24, VTRNA2-1, PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1, SHANK2, and COPG2IT1) whose expression could distinguish between newborn neurobehavioral profiles derived from the NNNS. Clustering infants based on the expression pattern of these genes identified 2 groups of infants characterized by reduced quality of movement, increased signs of asymmetrical and non-optimal reflexes, and increased odds of demonstrating increased signs of physiologic stress and abstinence. Overall, these results suggest that common variation in placental imprinted gene expression is linked to suboptimal performance on scales of neurological functioning as well as with increased signs of physiologic stress, highlighting the central importance of the control of expression of these genes in the placenta for neurobehavioral development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623032PMC
http://dx.doi.org/10.1080/15592294.2015.1073880DOI Listing

Publication Analysis

Top Keywords

neurobehavioral development
12
increased signs
12
imprinted genes
8
genes placenta
8
imprinted gene
8
gene expression
8
signs physiologic
8
physiologic stress
8
expression
7
neurobehavioral
6

Similar Publications

Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo.

View Article and Find Full Text PDF

Therapeutic effects of CGS21680, a selective A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model.

Biomed Pharmacother

January 2025

College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.

View Article and Find Full Text PDF

Identifying genetic differences between bipolar disorder and major depression through multiple genome-wide association analyses.

Br J Psychiatry

January 2025

Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Human Genetics, University of California Los Angeles, USA; and Department of Computational Medicine, University of California Los Angeles, USA.

Background: Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).

Aims: We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.

View Article and Find Full Text PDF

Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research.

View Article and Find Full Text PDF

This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!