Objectives: To develop and evaluate a protein microarray assay with horseradish peroxidase (HRP) chemiluminescence for quantification of α-fetoprotein (AFP) in serum from patients with hepatocellular carcinoma (HCC).

Methods: A protein microarray assay for AFP was developed. Serum was collected from patients with HCC and healthy control subjects. AFP was quantified using protein microarray and enzyme-linked immunosorbent assay (ELISA).

Results: Serum AFP concentrations determined via protein microarray were positively correlated (r = 0.973) with those determined via ELISA in patients with HCC (n = 60) and healthy control subjects (n = 30). Protein microarray showed 80% sensitivity and 100% specificity for HCC diagnosis. ELISA had 83.3% sensitivity and 100% specificity. Protein microarray effectively distinguished between patients with HCC and healthy control subjects (area under ROC curve 0.974; 95% CI 0.000, 1.000).

Conclusion: Protein microarray is a rapid, simple and low-cost alternative to ELISA for detecting AFP in human serum.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300060515583075DOI Listing

Publication Analysis

Top Keywords

protein microarray
32
patients hcc
12
healthy control
12
control subjects
12
protein
8
horseradish peroxidase
8
chemiluminescence quantification
8
microarray assay
8
hcc healthy
8
sensitivity 100%
8

Similar Publications

Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.

Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.

View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF

Amino acids in wine grapes function as precursors for various secondary metabolites and play a vital role in plant growth, development, and stress resistance. The amino acid/auxin permease () genes encode a large family of transporters; however, the identification and function of the gene family in grapes remain limited. Consequently, we conducted a comprehensive bioinformatics analysis of all genes in grapes, encompassing genome sequence analysis, conserved protein domain identification, chromosomal localization, phylogenetic relationship analysis, and gene expression profiling.

View Article and Find Full Text PDF

SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the gene family in centipedegrass [ (Munro) Hack.], which is an important warm-season perennial C4 turfgrass.

View Article and Find Full Text PDF

Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!