AI Article Synopsis

  • Three-dimensional fluorescence parameters can effectively reveal the classification and changes in dissolved organic pollutants during wastewater treatment.
  • The study compared conventional pollutants (like COD, TN, and TP) with fluorescence analyses, highlighting significant changes in fluorescence peak positions and intensities, indicating shifts in organic content pre- and post-treatment.
  • Results showed that while humic-like substances remained largely unchanged, protein-like compounds degraded significantly and had a strong positive correlation with COD, TN, and TP levels, demonstrating the utility of fluorescence techniques in monitoring pollutant degradation in wastewater processes.

Article Abstract

Three-dimensional fluorescence parameters can reflect classification, properties and content change of pollutants in wastewater treatment. In the present paper, by using three-dimensional fluorescence characteristic analysis, comparative analysis of conventional organic pollutants such as COD, TN and TP, and three dimensional fluorescence spectrum analysis, the classification and content of dissolved organic pollutants were identified. We studied fluorescence spectra, fluorescence peak (R. U.), fluorescence index (FI), humification index (HIX) of DOM's four components in the entrance and effluent water and interstitial water, as well as the correlation between these four components and COD, TN and TP. The results showed that the position and intensity of the characteristic fluorescence peak center changed significantly before and after sewage treatment, indicating that the relative composition and content of the organic wastewater varied with wastewater treatment. Furthermore, the test results presented that humic-like composition was not degraded significantly, while protein-like composition was degraded significantly. And the protein-like component and COD, TN and TP presented significant positive correlation. This paper analyzed the fluorescence characteristics changes of dissolved organic matter in sewage treatment by using three-dimensional fluorescence spectrometry, and discussed the feasibility of three-dimensional fluorescence technique applied for description of dissolved organic pollutant degradation rule in the wastewater treatment process.

Download full-text PDF

Source

Publication Analysis

Top Keywords

three-dimensional fluorescence
16
wastewater treatment
12
dissolved organic
12
fluorescence
11
fluorescence spectra
8
organic pollutants
8
fluorescence peak
8
sewage treatment
8
composition degraded
8
degraded protein-like
8

Similar Publications

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.

eNeuro

January 2025

Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.

To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.

View Article and Find Full Text PDF

Simultaneous determination of vegetable oil frying frequency and peroxide value based on the three-dimensional fluorescence spectroscopy and machine learning.

Food Chem

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; Weifang Institute of food science and processing technology, Weifang 261000, PR China. Electronic address:

The practice of deep-frying introduces various health concerns. Assessing the quality of frying oil is paramount. This study employs three-dimensional fluorescence spectroscopy to evaluate the peroxide value of vegetable oils after varying frying times.

View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!