Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Does cytosolic pressure facilitate f-actin polymerization to push the leading edge of a cell forward during self-propelled motion? AFM force-distance (f-d) curves obtained from lamellipodia of live cells often exhibit a signal from which the tension, bending modulus, elastic modulus and thickness in the membrane-cortex complex can be estimated close to the contact point. These measurements permit an estimate of the cytosolic pressure via the canonical Laplace force balance. The deeper portion of the f-d curve allows estimation of the bulk modulus of the cytoskeleton after removal of the bottom effect artifact. These estimates of tension, pressure, cortex thickness and elastic moduli imply that cytosolic pressure both pushes the membrane forward and compresses the actin cortex rearward to facilitate f-actin polymerization. We also estimate that cytosolic pressure fluctuations, most likely induced by myosin, provide a propulsive force comparable to that provided by f-actin polymerization in a lamellipod.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650671 | PMC |
http://dx.doi.org/10.1038/srep12314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!