This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508832 | PMC |
http://dx.doi.org/10.1038/srep12286 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.
View Article and Find Full Text PDFSmart luminescent materials have drawn a significant attention owing to their unique optical properties and versatility in sensor applications. These materials, encompassing a broad spectrum of organic, inorganic, and hybrid systems including quantum dots, organic dyes, and metal-organic frameworks (MOFs), offer tunable emission characteristics that can be engineered at the molecular or nanoscale level to respond to specific stimuli, such as temperature, pH, and chemical presence. Recent advancements have been driven by the integration of nanotechnology, which enhances the sensitivity and selectivity of luminescent materials in sensor platforms.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:
Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Bioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!