Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509652 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132794 | PLOS |
Front Parasitol
April 2024
INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.
View Article and Find Full Text PDFJ Vis Exp
November 2024
CSIRO-QUT Synthetic Biology Alliance, Queensland University of Technology; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology; Centre for Agriculture and the Bioeconomy, Queensland University of Technology; School of Biology and Environmental Science, Queensland University of Technology; Centre for Genomics and Personalised Health, Queensland University of Technology.
This protocol outlines the production and optimization of a eukaryotic Cell-Free Protein Expression System (CFPS) derived from the unicellular flagellate Leishmania tarentolae, referred to as Leishmania Translational Extract or LTE. Although this organism originally evolved as a parasite of geckos, it can be cultivated easily and inexpensively in flasks or bioreactors. Unlike Leishmania major, it is non-pathogenic to humans and does not require special laboratory precautions.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Veterinary Medicine, University of Bari, Bari, Italy.
The detection of Leishmania tarentolae in sympatric areas where Leishmania infantum is endemic raised questions regarding the protective effect exerted in dogs by L. tarentolae when in coinfection. This study aimed monitoring the in vitro gene expression of pro- (IFN- γ; TNF-α; IL-12) and anti-inflammatory (IL-4; IL-6; IL-10) cytokines in primary canine macrophages infected by L.
View Article and Find Full Text PDFNPJ Vaccines
November 2024
Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective.
View Article and Find Full Text PDFPLoS Pathog
October 2024
Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!