Observation of Localized States in Lieb Photonic Lattices.

Phys Rev Lett

Departamento de Física, MSI-Nucleus on Advanced Optics, and Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile.

Published: June 2015

We present the first experimental demonstration of a new type of localized state in the continuum, namely, compacton-like linear states in flat-band lattices. To this end, we employ photonic Lieb lattices, which exhibit three tight-binding bands, with one being perfectly flat. Discrete predictions are confirmed by realistic continuous numerical simulations as well as by direct experiments. Our results could be of great importance for fundamental physics as well as for various applications where light needs to be conducted in a diffractionless and localized manner over long distances.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.245503DOI Listing

Publication Analysis

Top Keywords

observation localized
4
localized states
4
states lieb
4
lieb photonic
4
photonic lattices
4
lattices experimental
4
experimental demonstration
4
demonstration type
4
type localized
4
localized state
4

Similar Publications

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.

View Article and Find Full Text PDF

While bacille-calmette-guerin (BCG) vaccination is one of the recommended strategies for preventing tuberculosis (TB), its coverage is low in several countries, including Ethiopia. This study investigated the spatial co-distribution and drivers of TB prevalence and low BCG coverage in Ethiopia. This ecological study was conducted using data from a national TB prevalence survey and the Ethiopian demographic and health survey (EDHS) to map the spatial co-distribution of BCG vaccination coverage and TB prevalence.

View Article and Find Full Text PDF

Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.

View Article and Find Full Text PDF

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!