Spin Chirality Tuning and Topological Semimetals in Strained HgTe(x)S(1-x).

Phys Rev Lett

Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany.

Published: June 2015

By means of detailed electronic structure calculations, we show that strained HgTe(x)S(1-x) alloys show a surprisingly rich topological phase diagram. In the strong topological insulator phase, the spin chirality of the topological nontrivial surface states can be reversed by adjusting the alloy concentration x and the strain. On top of this, we predict two semimetallic topological phases, namely, a Dirac semimetal and a Weyl semimetal. The topological phases are characterized by their Z2 invariants and their mirror Chern numbers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.236805DOI Listing

Publication Analysis

Top Keywords

spin chirality
8
strained hgtexs1-x
8
topological phases
8
topological
6
chirality tuning
4
tuning topological
4
topological semimetals
4
semimetals strained
4
hgtexs1-x detailed
4
detailed electronic
4

Similar Publications

Chiral Metal Coating to Enhance Water Electrolysis.

Energy Fuels

January 2025

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Producing hydrogen through water splitting often faces challenges of overpotential, stability, and expensive catalysts, which limit its efficiency and hinder the advancement of hydrogen production technologies. Nickel foam and nickel meshes have emerged as promising materials for electrolyzer electrodes due to their high surface area and the ability to produce electrolyzers with a very small gap between the anode and cathode. This study presents a simple method for coating Ni-based electrodes with a chiral Ni-Au film, using electroplating, thus enhancing its efficiency dramatically.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Nonvolatile Magnonics in Bilayer Magnetic Insulators.

Nano Lett

January 2025

Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF

1.5D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property.

Angew Chem Int Ed Engl

January 2025

School of Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI, by incorporating achiral guanidinium (GA) and chiral R/S-methylbenzylammonium (R/S-MBA) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!