The on-chip generation of nonclassical states of light is a key requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such nonclassical light can be generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon tunneling) or diminish (photon blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and quantum-dot resonances enables the generation of high-purity nonclassical light from strongly coupled systems. For specific detunings we show that not only the purity but also the efficiency of single-photon generation increases significantly, making high-quality single-photon generation by photon blockade possible with current state-of-the-art samples.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.233601DOI Listing

Publication Analysis

Top Keywords

nonclassical light
12
photon blockade
12
generation nonclassical
8
single photon
8
single-photon generation
8
photon
7
coherent generation
4
nonclassical
4
light
4
light chip
4

Similar Publications

Non-classicality and the effect of one photon.

Philos Trans A Math Phys Eng Sci

December 2024

Blackett Laboratory, Imperial College, London SW72AZ, UK.

The quantum interference effects of mixing the most non-classical states of light, number states, with the most classical-like of pure field states, the coherent state, are investigated. We demonstrate how the non-classicality of a single photon when mixed with a coherent field can transform the statistical properties of the output and further demonstrate that the entanglement of the output is independent of the coherent state amplitude.This article is part of the theme issue 'The quantum theory of light'.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease caused by the deficiency of one of the enzymes involved in cortisol synthesis. More than 95% of the cases occur as a result of defects in the gene encoding 21-hydroxylase (CYP21A2). 21 hydroxylase deficiency has been divided into classical and non-classical forms.

View Article and Find Full Text PDF

Exploring the electronic states of molecules through excitation with entangled and classical photon pairs offers new insights into the nature of light-matter interactions and stimulates the development of quantum spectroscopy. Here, we address the importance of temporal entanglement of light in two-photon absorption (TPA) upon the S → S transition by the green fluorescent protein (GFP)─a key molecular unit in the bioimaging of living cells. By invoking a two-level model applicable when permanent dipole pathways dominate the two-photon transition, we derive a convenient closed-form analytical expression for the entangled TPA strength.

View Article and Find Full Text PDF

Strongly driven nonlinear optical processes such as spontaneous parametric down-conversion and spontaneous four-wave mixing can produce multiphoton nonclassical beams of light which have applications in quantum information processing and sensing. In contrast to the low-gain regime, new physical effects arise in a high-gain regime due to the interactions between the nonclassical light and the strong pump driving the nonlinear process. Here, we describe and experimentally observe a gain-induced group delay between the multiphoton pulses generated in a high-gain type-II spontaneous parametric down-conversion source.

View Article and Find Full Text PDF

Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas.

Diabetes Obes Metab

December 2024

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!