Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b01767 | DOI Listing |
Nanomaterials (Basel)
November 2018
Chemistry Department, Moscow State University, 119991 Moscow, Russia.
To obtain a nanocrystalline SnO₂ matrix and mono- and bimetallic nanocomposites SnO₂/Pd, SnO₂/Pt, and SnO₂/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFAnal Chem
August 2015
†Department of Energy and Material Sciences, Faculty of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2009
Department of Materials, ETH Zürich, Wolfgang Pauli-Strasse, 10, CH-8093, Switzerland.
SnO2 gas sensors with palladium as additive in the range of 0.2 wt% and 3 wt% were studied by in situ X-ray absorption spectroscopy under idealized and real operating conditions. Simultaneously to the structural studies, measurements of the sensing properties were undertaken allowing for the determination of structure-function relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!