Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

Phys Chem Chem Phys

International Centre for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444, China.

Published: October 2015

Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity in benzene, the Creutz-Taube ion, the bacterial photosynthetic reaction centre, BNB, the molecular conductor Alq3, and inverted-region charge recombination in a ferrocene-porphyrin-fullerene triad photosynthetic model compound. Throughout, the fundamental nature of BO breakdown is linked to the properties of the cusp catastrophe: the cusp diameter is shown to determine the magnitudes of all couplings, numerical basis-set and trajectory-integration requirements, and to determine the transmission coefficient κ used to understand deviations from transition-state theory.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp02238jDOI Listing

Publication Analysis

Top Keywords

born-oppenheimer breakdown
8
non-adiabatic correction
8
thermodynamic spectroscopic
8
surface hopping
8
transition state
8
breakdown
5
correction
5
non-adiabatic effects
4
effects thermochemistry
4
thermochemistry spectroscopy
4

Similar Publications

Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.

View Article and Find Full Text PDF

Coherent x-ray spontaneous emission spectroscopy of conical intersections.

J Chem Phys

March 2024

Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.

Conical intersections are known to play a vital role in many photochemical processes. The breakdown of the Born-Oppenheimer approximation in the vicinity of a conical intersection causes exciting phenomena, such as the ultrafast radiationless decay of excited states. The passage of a molecule through a conical intersection creates a coherent superposition of electronic states via nonadiabatic couplings.

View Article and Find Full Text PDF

Electron transfer (ET) between neutral and cationic tryptophan residues in the azurin construct [Re(H126)(CO)(dmp)](W124)(W122)Cu (dmp = 4,7-Me-1,10-phenanthroline) was investigated by Born-Oppenheimer quantum-mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) simulations. We focused on W124 ← W122 ET, which is the middle step of the photochemical hole-hopping process *Re(CO)(dmp) ← W124 ← W122 ← Cu, where sequential hopping amounts to nearly 10,000-fold acceleration over single-step tunneling (. , , 192-200).

View Article and Find Full Text PDF

This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!