Convergent One-Pot Oxidative [n + 1] Approaches to Spiroacetal Synthesis.

Org Lett

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Published: August 2015

Two one-pot oxidative annulative approaches to spiroacetal synthesis are described. One approach uses a Lewis acid mediated Ferrier reaction in the fragment-coupling stage followed by DDQ-promoted oxidative carbon-hydrogen bond cleavage and cyclization. An alternative approach employs a Heck reaction for fragment coupling followed by DDQ-mediated enone formation and cyclization. These strategies provide convergent routes to common subunits in natural products, medicinal agents, and chemical libraries under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5b01736DOI Listing

Publication Analysis

Top Keywords

one-pot oxidative
8
approaches spiroacetal
8
spiroacetal synthesis
8
convergent one-pot
4
oxidative approaches
4
synthesis one-pot
4
oxidative annulative
4
annulative approaches
4
synthesis described
4
described approach
4

Similar Publications

Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.

View Article and Find Full Text PDF

Multielement-Doped Tungstic Acids via Submerged Photosynthesis for Enhanced All-Solar Photoelectrochemical Responses.

ACS Appl Mater Interfaces

January 2025

Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.

Bifunctional electrode materials that can convert solar energy into electricity and store chemical energy are a functional strategy for resolving the instability of solar energy. However, most commonly used transition metal oxide semiconductor materials lack broadband wavelength absorption responses, resulting in incomplete solar energy utilization. Herein, multielement-doped MoWO·0.

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Bougainvillea glabra-mediated synthesis of Zr₃O and chitosan-coated zirconium oxide nanoparticles: Multifunctional antibacterial and anticancer agents with enhanced biocompatibility.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:

The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.

View Article and Find Full Text PDF

N-acyl/sulfonyl-α-phosphonated 1,2,3,4-tetrahydroiso-quinolines (THIQs) are highly important structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot multicomponent cascade reaction to access N-acyl/sulfonyl-α-phosphonated THIQs via twice acyl/sulfonyl iminium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!