On-chip dilution in nanoliter droplets.

Analyst

Birck Nanotechnoloy Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Published: September 2015

Droplet microfluidics is enabling reactions at nano- and picoliter scale, resulting in faster and cheaper biological and chemical analyses. However, varying concentrations of samples on a drop-to-drop basis is still a challenging task in droplet microfluidics, primarily limited due to lack of control over individual droplets. In this paper, we report an on-chip microfluidic droplet dilution strategy using three-valve peristaltic pumps.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01829jDOI Listing

Publication Analysis

Top Keywords

droplet microfluidics
8
on-chip dilution
4
dilution nanoliter
4
nanoliter droplets
4
droplets droplet
4
microfluidics enabling
4
enabling reactions
4
reactions nano-
4
nano- picoliter
4
picoliter scale
4

Similar Publications

Targeted barcoding of variable antibody domains and individual transcriptomes of the human B-cell repertoire using Link-Seq.

PNAS Nexus

January 2025

Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.

View Article and Find Full Text PDF

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.

View Article and Find Full Text PDF

Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation.

Microsyst Nanoeng

January 2025

Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.

Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.

View Article and Find Full Text PDF

The capture of magnetic nanoparticles (MNPs) is essential in the separation and detection of MNPs for applications such as magnetic biosensing. The sensitivity of magnetic biosensors inherently depends upon the distribution of captured MNPs within the sensing area. We previously demonstrated that the distribution of MNPs captured from evaporating droplets by ferromagnetic antidot nanostructures can be controlled via an external magnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!