Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534258 | PMC |
http://dx.doi.org/10.1073/pnas.1503535112 | DOI Listing |
Cell Death Differ
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea.
The inflammatory response consists of two stages: priming and triggering. The triggering stage is marked by the activation of inflammasomes, which are cytosolic protein complexes acting as platforms for inflammation. Inflammasomes are divided into canonical and noncanonical categories.
View Article and Find Full Text PDFCell Res
January 2025
The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
The systematic identification and functional characterization of noncanonical translation products, such as novel peptides, will facilitate the understanding of the human genome and provide new insights into cell biology. Here, we constructed a high-coverage peptide sequencing reference library with 11,668,944 open reading frames and employed an ultrafiltration tandem mass spectrometry assay to identify novel peptides. Through these methods, we discovered 8945 previously unannotated peptides from normal gastric tissues, gastric cancer tissues and cell lines, nearly half of which were derived from noncoding RNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!