Aldosterone and Salt Loading Independently Exacerbate the Exercise Pressor Reflex in Rats.

Hypertension

From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.).

Published: September 2015

The sympathetic and pressor responses to exercise are exaggerated in hypertension. Evidence suggests that an overactive exercise pressor reflex (EPR) contributes to this abnormal responsiveness. The mechanisms underlying this EPR overactivity are poorly understood. An increasing body of evidence suggests that aldosterone and excessive salt intake play a role in regulating resting sympathetic activity and blood pressure in hypertension. Therefore, each is a good candidate for the generation of EPR dysfunction in this disease. The purpose of this study was to examine whether excessive salt intake and chronic administration of aldosterone potentiate EPR function. Changes in mean arterial pressure and renal sympathetic nerve activity induced by EPR stimulation were examined in vehicle and aldosterone-treated (4 weeks via osmotic mini-pump) Sprague-Dawley rats given either water or saline (elevated salt load) to drink. When compared with vehicle/water-treated rats, stimulation of the EPR by muscle contraction evoked significantly greater increases in mean arterial pressure in vehicle/saline, aldosterone/water, and aldosterone/saline-treated animals (14±3, 29±3, 37±6, and 44±7 mm Hg/kg, respectively; P<0.01). A similar renal sympathetic nerve activity response profile was likewise produced (39±11%, 87±15%, 110±20%, and 151±25%/kg, respectively; P<0.01). The pressor and sympathetic responses to the individual activation of the mechanically and chemically sensitive components of the EPR were also augmented by both saline and aldosterone. These data provide the first direct evidence that both aldosterone and high salt intake elicit EPR overactivity. As such, each represents a potential mechanism by which sympathetic activity and blood pressure are augmented during exercise in hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537393PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05810DOI Listing

Publication Analysis

Top Keywords

exercise pressor
8
pressor reflex
8
evidence suggests
8
excessive salt
8
salt intake
8
arterial pressure
8
epr
6
aldosterone salt
4
salt loading
4
loading independently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!