A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Common dependence on stress for the statistics of granular avalanches and earthquakes. | LitMetric

Both earthquake size-distributions and aftershock decay rates obey power laws. Recent studies have demonstrated the sensibility of their parameters to faulting properties such as focal mechanism, rupture speed or fault complexity. The faulting style dependence may be related to the magnitude of the differential stress, but no model so far has been able to reproduce this behaviour. Here we investigate the statistical properties of avalanches in a dissipative, bimodal particulate system under slow shear. We find that the event size-distribution obeys a power law only in the proximity of a critical volume fraction, whereas power-law aftershock decay rates are observed at all volume fractions accessible in the model. Then, we show that both the exponent of the event size-distribution and the time delay before the onset of the power-law aftershock decay rate are decreasing functions of the shear stress. These results are consistent with recent seismological observations of earthquake size-distribution and aftershock statistics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508663PMC
http://dx.doi.org/10.1038/srep12280DOI Listing

Publication Analysis

Top Keywords

aftershock decay
12
decay rates
8
event size-distribution
8
power-law aftershock
8
common dependence
4
dependence stress
4
stress statistics
4
statistics granular
4
granular avalanches
4
avalanches earthquakes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!