Solid stresses emerge as the expanding tumor displaces and deforms the surrounding normal tissue, and also as a result of intratumoral component interplay. Among other things, solid stresses are known to induce extensive extracellular matrix synthesis and reorganization. In this study, we developed a mathematical model of tumor growth that distinguishes the contribution to stress generation by collagenous and non-collagenous tumor structural components, and also investigates collagen fiber remodeling exclusively due to solid stress. To this end, we initially conducted in vivo experiments using an orthotopic mouse model for breast cancer to monitor primary tumor growth and derive the mechanical properties of the tumor. Subsequently, we fitted the mathematical model to experimental data to determine values of the model parameters. According to the model, intratumoral solid stress is compressive, whereas extratumoral stress in the tumor vicinity is compressive in the radial direction and tensile in the periphery. Furthermore, collagen fibers engaged in stress generation only in the peritumoral region, and not in the interior where they were slackened due to the compressive stress state. Peritumoral fibers were driven away from the radial direction, tended to realign tangent to the tumor-host interface, and were also significantly stretched by tensile circumferential stresses. By means of this remodeling, the model predicts that the tumor is enveloped by a progressively thickening capsule of collagen fibers. This prediction is consistent with long-standing observations of tumor encapsulation and histologic sections that we performed, and it further corroborates the expansive growth hypothesis for the capsule formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597369 | PMC |
http://dx.doi.org/10.3109/03008207.2015.1047929 | DOI Listing |
World J Gastroenterol
January 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Augusta University, Augusta, GA 30912, United States.
Fecal incontinence is a common condition that can significantly impact patients' quality of life. Obstetric anal sphincter injury and anorectal surgeries are common etiologies. Endoanal ultrasound and anorectal manometry are important diagnostic tools for evaluating patients.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.
Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People's Republic of China.
Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mining, Guizhou University, Guiyang, 550025, Guizhou, China.
In order to solve the problems of serious deformation and difficult support of roadway surrounding rock in the process of gob-side entry driving, taking 230,708 working face of Huopu Mine as the engineering background, the migration characteristics of overburden rock and the stress distribution of surrounding rock before and after roof cutting in the process of gob-side entry driving were studied by means of theoretical analysis, similar simulation test and field measurement. The results show that: ① the establishment of lateral suspension mechanical model analysis found that, with the increase of coal seam dip angle, the reduction of the coal pillar bearing capacity before and after cutting the top gradually decreases, the dip angle of coal seam is 30°, Compared with the reduction of coal pillar bearing capacity before roof cutting is 2164 KN; with the increase of the overburden rock caving angle, the reduction of the coal pillar bearing capacity before and after cutting the top increases continuously, the caving angle of overburden rock is 63°, Compared with the reduction of coal pillar bearing capacity before roof cutting is 2218 KN. ② After the implementation of roof cutting and cutting off the overhanging roof structure, the stress of the surrounding rock of the coal pillar gang in the roadway has significantly decreased by 18.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mines, China University of Mining and Technology, No.1 Daxue Rd, Xuzhou, 221116, China.
Pillar stability has garnered significant attention owing to the effects of pillars on coal resource recovery rate, coal pillar stability, and coal bump risk. This study examined the roadway stability control principles of conventional and yield coal pillars. The conventional coal pillars were designed as load-bearing structures with a high load-bearing capacity to carry most of the abutment load, while yield coal pillars were designed as buffer structures for transferring rapidly increasing abutment loads to adjacent solid coal ribs by progressive deformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!