Objective: Use of surgical energy is integral to laparoscopic surgery (LS). Energized dissection (ED) has a potential to impact the biomolecular expression of inflammation due to ED-induced collateral inflammation. We did this triple-blind randomized controlled (RCT) study to assess this biomolecular footprint in an index LS, i.e., laparoscopic cholecystectomy (LC).

Methods And Procedures: This RCT was conducted in collaboration with tertiary-level institutions, from January 2014 to December 2014 with institutional review board clearance. Consecutive, unselected, consenting candidates for LC were randomized (after anesthesia induction) into group I (ED) and group II (non-ED). They were managed with compliance to universal protocols for ethics, informed consent, anesthesia, drug usage and clinical pathway with blinded observers. Biomolecular inflammatory markers, i.e., interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) and highly sensitive CRP (HS-CRP), were measured with blood drawn juxta-preoperatively (H0), at 4 h (H4) and at 24 h (H24). The quantitative changes induced by ED on IL-6, TNF-α and HS-CRP at H0, H4 and H24 with their kinetic behavior were the study endpoint. Prospective data were analyzed statistically with a p value of <0.05 being significant.

Results: Two cases from the ED group had biliary injury and hence were withdrawn from analysis. The ED (n = 49) and non-ED (n = 51) groups had similar demographic, clinical and H0 biomolecular variables. There was a significant increase in IL-6, TNF-α and HS-CRP from H0 to H4 in both the groups (p values <0.001). From H4 to H24, all three cytokines showed significant increase in ED group (p < 0.05), whereas in the non-ED group, IL-6 showed significant fall (p = 0.004) and TNF-α showed no significant change (p = 0.063). Both the groups showed H4-H24 elevation of HS-CRP (p = 0.000).

Conclusion: Energized dissection adds to the cytokine-mediated postoperative inflammation. The additional ED-induced inflammation can be measured objectively by IL-6 and TNF-α levels.

Clinical Trials Registry: Clinical Trials Registry, India (REF/2014/06/007153).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00464-015-4408-2DOI Listing

Publication Analysis

Top Keywords

biomolecular inflammatory
8
surgical energy
8
laparoscopic surgery
8
biomolecular
4
inflammatory response
4
response surgical
4
energy usage
4
usage laparoscopic
4
surgery randomized
4
randomized study
4

Similar Publications

A Novel Approach for In Vitro Testing and Hazard Evaluation of Nanoformulated RyR2-Targeting siRNA Drugs Using Human PBMCs.

Life (Basel)

January 2025

Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy.

Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns-particularly those specific to this class of drugs-is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs.

View Article and Find Full Text PDF

Exploring neutrophils as therapeutic targets in cardiometabolic diseases.

Trends Pharmacol Sci

January 2025

Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy. Electronic address:

Current therapies for diabetes and atherosclerotic cardiovascular diseases (ACVDs) mainly target metabolic risk factors, but often fall short in addressing systemic inflammation, a key driver of disease onset and progression. Advances in our understanding of the biology of neutrophils, the cells that are principally involved in inflammatory situations, have highlighted their pivotal role in cardiometabolic diseases. Yet, neutrophils can reprogram their immune-metabolic functions based on the energetic substrates available, thus influencing both tissue homeostasis and the resolution of inflammation.

View Article and Find Full Text PDF

Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level.

View Article and Find Full Text PDF

Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!