Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

Biochem Cell Biol

a Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, (2000) Rosario, Argentina.

Published: August 2015

It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p < 0.05). Ureagenesis from ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p < 0.05). In vivo studies in rats subjected to 7 days acidosis also showed decreased protein expression of hepatic mtAQP8 (-50%, p < 0.05) and reduced liver urea content (-35%; p < 0.05). In conclusion, our in vitro and in vivo data suggest that hepatic mtAQP8 expression is downregulated in acidosis, a mechanism that may contribute to decreased ureagenesis from ammonia in response to acidosis.

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2014-0168DOI Listing

Publication Analysis

Top Keywords

ureagenesis ammonia
12
hepatocyte mitochondrial
8
mitochondrial aquaporin-8
8
response acidosis
8
protein expression
8
hepatic mtaqp8
8
ammonia
6
acidosis
6
ureagenesis
5
mtaqp8
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!