A highly sensitive optical fiber twist sensor has been proposed by employing a Sagnac interferometer based on polarization-maintaining elliptical core fibers (PM-ECFs). The twist effects have been theoretically analyzed and experimentally demonstrated. Based on the photoelastic effect, the resonance wavelength linearly shifts with the increment of twist and the wavelength shift is also dependent on the torsion direction. The maximum torsion sensitivities reach 18.60nm/(rad/m) for clockwise (CW) torsion direction and 15.83nm/(rad/m) for anticlockwise (ACW) torsion direction, respectively. To eliminate the temperature cross-sensitivity effect, a sensor matrix for simultaneous measurement of twist and temperature has also been obtained. Moreover, theoretical and experimental investigations indicate that by optimizing the refractive index difference between the core and cladding, core ellipticity and cladding diameter, the twist sensitivity could be further improved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.015372 | DOI Listing |
RSC Chem Biol
January 2025
Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.
View Article and Find Full Text PDF3D Print Med
January 2025
Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.
Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Institute of Physical Chemistry, RWTH Aachen University, Aachen 52074, Germany.
Exploring the conformational space of molecules remains a challenge of fundamental importance to quantum chemistry: identification of relevant conformers at ambient conditions enables predictive simulations of almost arbitrary properties. Here, we propose a novel approach, called TTConf, to enable conformational sampling of large organic molecules where the combinatorial explosion of possible conformers prevents the use of a brute-force systematic conformer search. We employ tensor trains as a highly efficient dimensionality reduction algorithm, effectively reducing the scaling from exponential to polynomial.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, New York University, New York, New York 10003, USA.
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.
View Article and Find Full Text PDFJTCVS Open
December 2024
Department of Cardiovascular Surgery, Seirei Mikatahara General Hospital, Hamamatsu, Japan.
Objective: A novel approach to 3-dimensional morphometry of the thoracic aorta was developed by applying centerline analysis based on least-squares plane fitting, and a preliminary study was conducted using computed tomography imaging data.
Methods: We retrospectively compared 3 groups of patients (16 controls without aortic disease, and 16 cases each with acute type B aortic dissection and congenital bicuspid aortic valve). In addition to the standard assessment indices for curvature κ and torsion τ, we conducted coordinate transformation based on the least-squares plane, divided the centerline into 3 representative features (transverse, anterior-posterior, and longitudinal displacements), and analyzed the overall and local displacement in each direction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!