Objective: Wireless control and power harvesting systems that operate injectable, cellular-scale optoelectronic components provide important demonstrated capabilities in neuromodulatory techniques such as optogenetics. Here, we report a radio frequency (RF) control/harvesting device that offers dramatically reduced size, decreased weight and improved efficiency compared to previously reported technologies. Combined use of this platform with ultrathin, multijunction, high efficiency solar cells allows for hundred-fold reduction of transmitted RF power, which greatly enhances the wireless coverage.
Approach: Fabrication involves separate construction of the harvester and the injectable µ-ILEDs. To test whether the presence of the implantable device alters behavior, we implanted one group of wild type mice and compared sociability behavior to unaltered controls. Social interaction experiments followed protocols defined by Silverman et al. with minor modifications.
Main Results: The results presented here demonstrate that miniaturized RF harvesters, and RF control strategies with photovoltaic harvesters can, when combined with injectable µ-ILEDs, offer versatile capabilities in optogenetics. Experimental and modeling studies establish a range of effective operating conditions for these two approaches. Optogenetics studies with social groups of mice demonstrate the utility of these systems.
Significance: The addition of miniaturized, high performance photovoltaic cells significantly expands the operating range and reduces the required RF power. The platform can offer capabilities to modulate signaling path in the brain region of freely-behaving animals. These suggest its potential for widespread use in neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714570 | PMC |
http://dx.doi.org/10.1088/1741-2560/12/5/056002 | DOI Listing |
J Insect Sci
January 2025
School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.
View Article and Find Full Text PDFSensors (Basel)
January 2025
The Blavatnik School of Computer Science and AI, Tel Aviv University, Tel Aviv 69978, Israel.
This article surveys the literature on miniature radio transmitters designed to track free-ranging wild animals using emitter-localization techniques. The articles covers the topics of power sources used in such transmitters, including miniature batteries and energy harvesting, techniques for generating the transmitted radio-frequency carrier, techniques for creating short radio pulses and more general on-off schedules, modulation in modern wildlife-tracking transmitters, construction, manufacturing, and tuning techniques, and recent trends in this area. The article also describes the recreation of the first successful wildlife-tracking transmitter, a nontrivial invention that had a profound impact on wildlife ecology, and explores its behavior.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Peking University Yangtze River Delta Institute of Optoelectronics, Nantong 100871, China.
To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland.
The production of consumer electronics using electrically conductive materials is a dynamically developing sector of the economy. E-textiles (electronic textiles) are also used in radio frequency identification technology, mainly in the production of tag antennas. For economic reasons, it is important that the finished product is universal, although frequencies in radio systems have different values in different regions of the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!