It is well known that the "free" form of glycans that are structurally related to asparagine (N)-linked glycans ("free N-glycans") are found in a wide variety of organisms. The mechanisms responsible for the formation/degradation of high mannose-type free N-glycans have been extensively studied in mammalian cells. Recent evidence, however, also suggests that sialylated, complex-type free N-glycans are also present in the cytosol of various mammalian-derived cultured cells/tissues. We report herein on an investigation of the mechanism responsible for the degradation of such sialyl free N-glycans. The findings show that the amount of glycans is dramatically reduced upon the co-expression of cytosolic sialidase NEU2 with cytosolic β-glycosidase GBA3 in human stomach cancer-derived MKN45 cells. The physical interaction between NEU2 and GBA3 was confirmed by co-precipitation analyses as well as gel filtration assays. The NEU2 protein was found to be stabilized in the presence of GBA3 both in cellulo and in vitro. Our results thus indicate that cytosolic GBA3 is likely involved in the catabolism of cytosolic sialyl free N-glycans, possibly by stabilizing the activity of the NEU2 protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598761 | PMC |
http://dx.doi.org/10.3390/biom5031499 | DOI Listing |
Food Chem
December 2024
Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China. Electronic address:
Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively.
View Article and Find Full Text PDFiScience
November 2024
Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan.
-Acetylglucosaminyltransferases-IVa (GnT-IVa or MGAT4A) and -IVb (MGAT4B) are glycosyltransferase isozymes synthesizing the β1,4-GlcNAc branch in -glycans, a glycan structure involved in diabetes. These enzymes uniquely have a non-catalytic lectin domain, which selectively recognizes the GnT-IV product -glycan branch, but the role of this lectin domain has remained unclear. Here, using UDP-Glo enzyme assays, we discovered that this domain is required for activity toward glycoprotein substrates but not toward free glycans.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan. Electronic address:
Free N-glycans (FNGs) are oligosaccharides that are structurally related to N-linked glycans, and are widely found in nature. The mechanisms responsible for the formation and degradation of intracellular FNGs are well characterized in mammalian cells. More recent analysis in mammalian sera shows that there are various types of extracellular free glycans, including FNGs.
View Article and Find Full Text PDFN Biotechnol
November 2024
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria. Electronic address:
β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Retired Professor of Biochemistry and Molecular Cellular Biology.
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet's surface -glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!