Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598648 | PMC |
http://dx.doi.org/10.3390/life5031472 | DOI Listing |
Am J Ind Med
January 2025
Icahn School of Medicine at Mount Sinai, Selikoff Centers for Occupational Health, New York, New York, USA.
Background: Housecleaning work has been characterized as precarious employment with unstable work hours, arbitrary and low pay and benefits, and exposures to chemical, physical, and psychosocial stressors. Understanding how interpersonal power dynamics between workers and clients, a component of precarious work, contributes to work exposures can inform and improve prevention programs.
Methods: We used reflexive thematic analysis of data from seven focus groups with Latinx immigrant housecleaners in New York City to explore workers' experience of interpersonal power dynamics with their clients-whom they referred to as their "employers"-and its influences on working conditions.
J Environ Manage
January 2025
College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei 050031, China. Electronic address:
A simple, fast, sample-saving, and sensitive liquid chromatography-tandem mass spectrometry method was established with a linear range adjusted by in-source collision-induced dissociation. Notably, this could simultaneously determine busulfan, fludarabine, phenytoin, and posaconazole in plasma from children, each having unique physical and chemical properties. The procedure necessitated only 20 μL of plasma and involved a simple protein precipitation process.
View Article and Find Full Text PDFJ Comput Chem
January 2025
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!