In vitro experiments have a high potential to improve current chemical safety assessment and reduce the number of animals used. However, most studies conduct hazard assessment alone, largely ignoring exposure and kinetic parameters. Therefore, in this study the kinetics of cyclosporine A (CsA) and the dynamics of CsA-induced cyclophilin B (Cyp-B) secretion were investigated in three widely used hepatic in vitro models: primary rat hepatocytes (PRH), primary human hepatocytes (PHH) and HepaRG cells. Cells were exposed daily to CsA for up to 14 days. CsA in cells and culture media was quantified by LC-MS/MS and used for pharmacokinetic modeling. Cyp-B was quantified by western blot analysis in cells and media. All cell systems took up CsA rapidly from the medium after initial exposure and all showed a time- and concentration-dependent Cyp-B cellular depletion and extracellular secretion. Only in PRH an accumulation of CsA over 14 days repeated exposure was observed. Donor-specific effects in CsA clearance were observed in the PHH model and both PHH and HepaRG cells significantly metabolized CsA, with no bioaccumulation being observed after repeated exposure. The developed kinetic models are described in detail and show that all models under-predict the in vivo hepatic clearance of CsA, but to different extents with 27-, 24- and 2-fold for PRH, PHH and HepaRG cells, respectively. This study highlights the need for more attention to kinetics in in vitro studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2015.07.016 | DOI Listing |
SLAS Discov
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.
View Article and Find Full Text PDFALTEX
April 2024
Leiden University, Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands.
Next generation risk assessment of chemicals revolves around the use of mechanistic information without animal experimentation. In this regard, toxicogenomics has proven to be a useful tool to elucidate the underlying mechanisms of adverse effects of xenobiotics. In the present study, two widely used human in vitro hepatocyte culture systems, namely primary human hepatocytes (PHH) and human hepatoma HepaRG cells, were exposed to liver toxicants known to induce liver cholestasis, steatosis or necrosis.
View Article and Find Full Text PDFFront Immunol
December 2023
Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany.
Introduction: Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory models to assess the hepatotoxic potential of immuno-modulatory drug candidates.
View Article and Find Full Text PDFFundam Clin Pharmacol
February 2024
INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France.
Background: The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients.
Objectives: This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells.
Toxicology
February 2023
Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands.
The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!