Since a measurement of the bidirectional scatter distribution function (BSDF) of a material is proportional to the intensity of the scattered light, a BSDF measurement system with the addition of a dual rotating retarder polarimeter can be used to calculate the Mueller matrix of a scatterer. One advantage of a BSDF system using a laser source is its large dynamic range, which allows the measurement of scattered light both near to and away from the specular region. As BSDF measurements move away from the specular region and into a more diffuse-scatter region, the measured signal decreases and may approach the system's measurement floor. Therefore, BSDF and Mueller-matrix measurements are dependent not only on the scatter from the sample but also on the noise floor of the system. By analyzing numerically created bidirectional reflectance distribution function data, we show that since the noise floor of a system is typically constant, the Mueller-matrix measurement at the noise floor appears to be that of a perfect depolarizer. Therefore, as the BSDF measurement space moves away from the high-signal region and the noise floor is approached, the Mueller matrix assigned to the sample artificially approaches that of a perfect depolarizer. The rate and location in scatter-angle space of this shift is dependent on the BSDF of the material and on the signal-to-noise ratio in the system. Therefore, caution must be taken when drawing conclusions about measured Mueller matrices for scattered light, particularly in measurement regions where the measured signal approaches the system floor.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.005668DOI Listing

Publication Analysis

Top Keywords

noise floor
16
mueller matrix
12
distribution function
12
scattered light
12
measurement floor
8
dual rotating
8
rotating retarder
8
retarder polarimeter
8
bidirectional scatter
8
scatter distribution
8

Similar Publications

In this article, a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity, lower detection limit, and high-temperature stability, achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy. To improve performance, a T-type device with a 1 µm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa, which was 2.

View Article and Find Full Text PDF

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10), and the noise can be treated as a perturbation.

View Article and Find Full Text PDF

Comprehension of acoustically degraded emotional prosody in Alzheimer's disease and primary progressive aphasia.

Sci Rep

December 2024

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, 1st Floor, 8-11 Queen Square, London, WC1N 3AR, UK.

Previous research suggests that emotional prosody perception is impaired in neurodegenerative diseases like Alzheimer's disease (AD) and primary progressive aphasia (PPA). However, no previous research has investigated emotional prosody perception in these diseases under non-ideal listening conditions. We recruited 18 patients with AD, and 31 with PPA (nine logopenic (lvPPA); 11 nonfluent/agrammatic (nfvPPA) and 11 semantic (svPPA)), together with 24 healthy age-matched individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!