Ladar is suitable for 3D target recognition because ladar range images can provide rich 3D geometric surface information of targets. In this paper, we propose a part-based 3D model matching technique to recognize articulated ground military vehicles in ladar range images. The key of this approach is to solve the decomposition and pose estimation of articulated parts of targets. The articulated components were decomposed into isolate parts based on 3D geometric properties of targets, such as surface point normals, data histogram distribution, and data distance relationships. The corresponding poses of these separate parts were estimated through the linear characteristics of barrels. According to these pose parameters, all parts of the target were roughly aligned to 3D point cloud models in a library and fine matching was finally performed to accomplish 3D articulated target recognition. The recognition performance was evaluated with 1728 ladar range images of eight different articulated military vehicles with various part types and orientations. Experimental results demonstrated that the proposed approach achieved a high recognition rate.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.005382DOI Listing

Publication Analysis

Top Keywords

ladar range
16
range images
12
articulated target
8
target recognition
8
military vehicles
8
articulated
6
ladar
5
model-based recognition
4
recognition articulated
4
target
4

Similar Publications

Synthetic aperture Ladar (SAL) is an extension of synthetic aperture technology in the optical frequency band. Owing to the short wavelength of lasers, the system has high-resolution, high-data-rate, and refined imaging capabilities, which has potential in high-resolution observation fields such as ground observation and space target observation. However, the short wavelength of lasers also makes SAL severely sensitive to vibrations even on the micron order which cause azimuth defocusing and range cell migration.

View Article and Find Full Text PDF

A dual-channel inverse synthetic aperture ladar imaging experimental system based on wide-pulse binary phase coded signals and its moving target imaging are introduced. The analysis, simulation, and experimental data processing results of binary phase coded signal Doppler compensation and pulse compression are included. The method of motion phase error estimation based on interferometric processing and the imaging method with small computation in the case of large squint angles are proposed, and the simulation results are presented.

View Article and Find Full Text PDF

We present an optical ranging and super-resolution object localization method, monopulse ladar, used to determine the angle of a point target in two dimensions to a few percent of an optical beam width from differential measurements of four just-resolved waveform-encoded beams while simultaneously providing target range via either coherent or incoherent coded waveform correlation. A common optical carrier is shifted by four GHz-scale tones, each modulated with distinct ranging waveforms, which when transmitted from a Si-photonic 2D wavelength-steered serpentine optical phased array (SOPA) aperture form an encoded rectangular beam cluster that propagates to and scatters from a distant point target. Superposed backscattered target returns from each beam are decoded by correlation with reference waveforms at the receiver.

View Article and Find Full Text PDF

A long distance high resolution frequency-modulated continuous wave (FMCW) laser rangefinder with phase noise compensation and two-dimensional (2D) data processing skills is developed. Range-finding ladar consists of a continuously chirped laser source, an auxiliary reference interferometer, and a monostatic optical transceiver for target illumination and return photon collection. To extend the range unambiguity and lower the electronic processing bandwidth, a two-step laser frequency chirping scheme is adopted, where a long pulse width, small frequency bandwidth laser chirping signal are used in step 1 for coarse distance estimation, and a short pulse width and large frequency bandwidth laser chirping signal are applied afterwards for step 2 high resolution distance realization.

View Article and Find Full Text PDF

Inverse synthetic aperture LADAR (ISAL), based on an electro-optic in-phase and quadrature (I/Q) modulator, and homodyne detection, has high pulse repetition frequency, simple structure, and minimum intra-pulse phase errors. Homodyne detection can implement the de-chirp operation in the optical domain, while the output amplitude is susceptible to light intensity. However, the modulated optical signal amplitude fading, induced by radio frequency devices and the I/Q modulator, is quite tricky to measure and be compensated for.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!