A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 - x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) composites: synergistic effect on electrochemical performance. | LitMetric

A series of xLi1.5Ni0.25Mn0.75O2.5·(1 - x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) cathode materials have been synthesized. These compounds exhibit dramatic differences in structure, morphology and charge/discharge characteristics. As the x increases, the morphology shows an amazing trend: starting with an octahedral shape (x = 0), transforming to an octahedral/plate shape (0.1 ≤ x ≤ 0.9) in which both the spinel phase and the layered phase can be indexed in the XRD patterns, and ending up with a plate shape (x = 1.0). The particular layered-spinel composites xLi1.5Ni0.25Mn0.75O2.5·(1 - x)Li0.5Ni0.25Mn0.75O2 (0.1 ≤ x ≤ 0.9) exhibit better cycling stability than that of pristine spinel Li0.5Ni0.25Mn0.75O2 (x = 0) and layered Li1.5Ni0.25Mn0.75O2.5 (x = 1.0) materials. This improved cycling performance of these layered-spinel composites can be ascribed to the heterogeneous intergrowth of some layered phases and spinel phases in the parent structure as detected by TEM. Among these materials, Li0.5Ni0.25Mn0.75O2 and Li1.5Ni0.25Mn0.75O2.5 barely deliver the specific capacities of 90 mA h g(-1) and 117 mA h g(-1) at 5 C and show the capacity retentions of about 83% and 86% at 0.2 C after 50 cycles, respectively, while the layered-spinel 0.8Li1.5Ni0.25Mn0.75O2.5·0.2Li0.5Ni0.25Mn0.75O2 cathode shows the best rate capability of 162 mA h g(-1) at 5 C and the best cycling stability of 98% after 50 cycles at 0.2 C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt01678aDOI Listing

Publication Analysis

Top Keywords

≤ ≤
16
xli15ni025mn075o25·1 xli05ni025mn075o2
12
xli05ni025mn075o2 ≤
12
heterogeneous intergrowth
8
8
layered-spinel composites
8
cycling stability
8
intergrowth xli15ni025mn075o25·1
4
≤ composites
4
composites synergistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!