We report that K(+) and NH4(+) present different allosteric activation for higher-order human telomeric G-quadruplex DNA metalloenzyme. The obtained major endo products of Diels-Alder reaction can be switched from one preferred configuration in K(+) media (up to 92% ee) to its mirror configuration in NH4(+) media (up to -90% ee).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc05215gDOI Listing

Publication Analysis

Top Keywords

higher-order human
8
human telomeric
8
telomeric g-quadruplex
8
g-quadruplex dna
8
dna metalloenzyme
8
diels-alder reaction
8
metalloenzyme catalyzed
4
catalyzed diels-alder
4
reaction unexpected
4
unexpected inversion
4

Similar Publications

Researchers in numerical cognition have extensively studied the number sense-the innate human ability to extract numerical information from the environment quickly and effortlessly. Much of this research, however, uses abstract stimuli (e.g.

View Article and Find Full Text PDF

Purpose: This study compares the functional outcomes of correction using two different types of aberrational extended depth-of-focus (EDOF) intraocular lenses (IOLs).

Material And Methods: The study was conducted in two standardized groups (20 patients, 20 eyes in each group). Patients in group 1 were implanted EDOF IOL I, in group 2 - EDOF IOL II.

View Article and Find Full Text PDF

Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease.

BMC Neurosci

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.

Background: Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD.

Methods: SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy.

View Article and Find Full Text PDF

(HNVs), a genus within the family, includes the highly virulent Nipah and Hendra viruses that cause yearly reoccurring outbreaks of deadly disease. Recent discoveries of several new species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized. Here, to explore the limits of structural and antigenic variation in HNVs, we construct an expanded, antigenically diverse panel of HNV fusion (F) and attachment (G) glycoproteins from 56 unique HNV strains that better reflects global HNV diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!