At a relatively low loading concentration (≈0.02 wt%) of 2D MoS 2 flakes in PDMS, the composite membrane is able to almost completely block the permeation of NO2 gas molecules at ppm levels. This major reduction is ascribed to the strong physisorption of NO2 gas molecules onto the 2D MoS2 flake basal planes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201501129DOI Listing

Publication Analysis

Top Keywords

no2 gas
8
gas molecules
8
mos2 pdms
4
pdms nanocomposites
4
nanocomposites no2
4
no2 separation
4
separation low
4
low loading
4
loading concentration
4
concentration ≈002
4

Similar Publications

Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.

View Article and Find Full Text PDF

The ratio of nitrogen (N) to argon (Ar) in landfill gas was compared to the atmospheric gas ratio to quantify the balance between N generating (anaerobic ammonium oxidation, denitrification) and N consuming (nitrogen fixation) processes on three landfills undergoing in-situ stabilization. In the aerated landfills, as much as 22% of the extracted N could be explained by net denitrification, with coexisting aerobic and anaerobic domains fostering nitrification-dependent denitrification. Nitrogen fixation was also occasionally observed.

View Article and Find Full Text PDF

Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials.

Sensors (Basel)

December 2024

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.

The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.

View Article and Find Full Text PDF

Nitrogen dioxide (NO) and particulate matter of 2.5 microns (PM) are air pollutants that impact health, especially among vulnerable populations with respiratory disease. This study identifies factors influencing indoor NO and PM in low-income households of older adults with asthma who use gas stoves in Lowell, Massachusetts.

View Article and Find Full Text PDF

The Superior Response and High Reproducibility of the Memristor-Integrated Low-Power Transparent SnO₂ Gas Sensor.

Micromachines (Basel)

November 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

We present a SnO gas sensor with an HfO layer that exhibits enhanced performance and reliability for gasistor applications, combining a gas sensor and a memristor. The transparent SnO gasistor with a 30 nm HfO layer demonstrated low forming voltages (7.1 V) and a high response rate of 81.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!