Enhanced ~3.0 μm emission corresponding to Er3+:4I11/2→4I13/2 was achieved in Nd3+/Er3+ co-doped Lu0.15Y2.85Sc2Ga3O12 (abbr. as Nd,Er:LuYSGG) crystal under 808 nm pumping. As compared with Er:YSGG crystal, the absorption pump efficiency of Nd,Er:LuYSGG crystal is greatly improved and thus ~3.0 μm emission is enhanced by 2.2 times owing to the sensitization of Nd3+, at the same time, Nd3+ as deactivator quenches ~1.5 μm emission from Er3+:4I13/2 level and thus inhibit the self-termination effect successfully. The energy transfer efficiencies of Nd: 4F3/2→Er: 4I11/2 and Er: 4I13/2→Nd:4I15/2 are estimated to be 91.6% and nearly 100%, respectively. These results indicate that the introduction of Nd3+ is very helpful for achieving ~3.0 μm laser in Nd,Er:LuYSGG crystal.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.018554DOI Listing

Publication Analysis

Top Keywords

nderluysgg crystal
16
~30 μm
16
μm emission
12
crystal
5
μm
5
dual function
4
nd3+
4
function nd3+
4
nderluysgg
4
nd3+ nderluysgg
4

Similar Publications

In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.

View Article and Find Full Text PDF

A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!