We evaluated the activities of well-defined Ru@Pt core-shell nanocatalysts for hydrogen evolution and oxidation reactions (HER-HOR) using hanging strips of gas diffusion electrode (GDE) in solution cells. With gas transport limitation alleviated by micro-porous channels in the GDEs, the charge transfer resistances (CTRs) at the hydrogen reversible potential were conveniently determined from linear fit of ohmic-loss-corrected polarization curves. In 1 M HClO4 at 23 °C, a CTR as low as 0.04 Ω cm(-2) was obtained with only 20 μg cm(-2) Pt and 11 μg cm(-2) Ru using the carbon-supported Ru@Pt with 1:1 Ru:Pt atomic ratio. Derived from temperature-dependent CTRs, the activation barrier of the Ru@Pt catalyst for the HER-HOR in acids is 0.2 eV or 19 kJ mol(-1). Using the Ru@Pt catalyst with total metal loadings <50 μg cm(-2) for the HER in proton-exchange-membrane water electrolyzers, we recorded uncompromised activity and durability compared to the baseline established with 3 mg cm(-2) Pt black.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507399 | PMC |
http://dx.doi.org/10.1038/srep12220 | DOI Listing |
J Colloid Interface Sci
January 2025
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFSmall
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.
Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!