A vacuum auto-resonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.017560 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China.
3D-Printed quasi-solid-state microsupercapacitors (MSCs) present immense potential as next-generation miniature energy storage devices, offering superior power density, excellent flexibility, and feasible on-chip integration. However, the challenges posed by formulating 3D printing inks with high-performance and ensuring efficient ionic transport in thick electrodes hinder the development of advanced MSCs with high areal energy density. Herein, we report 3D-printed ultrahigh-energy-density asymmetric MSCs with latticed electrodes, fabricated using Ni-Co-S/Co(OH)/carbon nanotubes/reduced graphene oxide (Ni-Co-S/Co(OH)/CNTs/rGO) positive electrode ink and activated carbon (AC)/CNTs negative electrode ink.
View Article and Find Full Text PDFPhotochem Photobiol
March 2025
Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
Photobiomodulation (PBM) has demonstrated potential in promoting peripheral nerve regeneration. However, there is a limited and inconclusive study on the application of light-emitting diode (LED) for nerve injury repair. In this study, we designed an 807-nm LED device with high luminous uniformity to investigate the effects of LED-based PBM on peripheral nerve injury repair.
View Article and Find Full Text PDFACS Nano
March 2025
Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
Compared with acidic environments, promoting the water dissociation process is crucial for speeding up hydrogen evolution reaction (HER) kinetics in alkaline electrolyte. Although the construction of heterostructured electrocatalysts by hybridizing noble metals with metal (hydr)oxides has been reported as a feasible approach to achieve high performance, the high cost, complicated fabrication process, and unsatisfactory mass activity limit their large-scale applications. Herein, we report a single-phase HER electrocatalyst composed of single-atom ruthenium (Ru) incorporated into a cobalt oxide spine structure (denoted as Ru SA/CoO), which possesses exceptional HER performance in alkaline media via unusual atomic-scale Ru-Co pair sites.
View Article and Find Full Text PDFSci Rep
March 2025
College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 350108, Fuzhou, China.
A simple and feasible rabbit model of carpal tunnel syndrome (CTS) was established using an animal experimental study. Twenty-four New Zealand white rabbits were randomized into a normal group (Group C), a glucose injection model group (Groups N-M) and an ultrasound-guided injection model group (Groups U-M). Each group consisted of 8 rabbits.
View Article and Find Full Text PDFJ Environ Manage
March 2025
Department of Mechanical Engineering, 10-241, Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB, T6G 1H9, Canada. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that pose significant toxicity risks to humans and ecosystems. Traditional advanced oxidation processes using boron-doped diamond (BDD) anodes degrade PFAS in wastewater effectively but suffer from slow kinetics and high energy costs, limiting commercial application. This study introduces a hybrid process combining cathodic electro-Fenton (EF), anodic oxidation via a BDD anode, and membrane distillation (MD) to improve perfluorooctanoate (PFOA) degradation efficiency and reduce energy use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!