An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5 × 10(-6) RIU when measured in conjunction with a spectrometer of 12 pm/pixel resolution. The device is a two-layer structure, composed of a low refractive index polymer with a periodically modulated surface height, covered with a smooth upper-surface high refractive index inorganic-organic hybrid polymer modified with ZrO2based nanoparticles. Furthermore, it is fabricated using inexpensive vacuum-less techniques involving only UV nanoreplication and polymer spin-casting, and is thus well suited for single-use biological and refractive index sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.016529 | DOI Listing |
Natl Sci Rev
December 2024
Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China.
Adv Mater
September 2024
Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonics Research Institute (PRI), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.
Near-infrared (NIR) organic photodetectors (OPDs), particularly all-polymer-based ones, hold substantial commercial promise in the healthcare and imaging sectors. However, the process of optimizing their active layer composition to achieve highly competitive figures of merit lacks a clear direction and methodology. In this work, celebrity polymer acceptor PY-IT into a more NIR absorbing host system PBDB-T:PZF-V, to significantly enhance the photodetection competence, is introduced.
View Article and Find Full Text PDFAdv Mater
August 2024
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
Indoor photovoltaics (IPVs) are garnering increasing attention from both the academic and industrial communities due to the pressing demand of the ecosystem of Internet-of-Things. All-polymer solar cells (all-PSCs), emerging as a sub-type of organic photovoltaics, with the merits of great film-forming properties, remarkable morphological and light stability, hold great promise to simultaneously achieve high efficiency and long-term operation in IPV's application. However, the dearth of polymer acceptors with medium-bandgap has impeded the rapid development of indoor all-PSCs.
View Article and Find Full Text PDFSmall
July 2024
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Ternary strategy with integration characteristics and adaptability is a simple and effective method for blooming of the performance of photovoltaic devices. Herein, a novel wideband gap polymer donor PBB2-Hs is synthesized as the guest component to optimize all-polymer solar cells (all-PSCs). High-energy photon absorption and long exciton lifetime of PBB2-Hs constitute efficient energy transfer.
View Article and Find Full Text PDFNanotechnology
January 2024
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, 91190, Gif-sur-Yvette, France.
Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!