We present experimentally observed molecular adsorbate coverages (e.g., O(H), OOH and HOOH) on real operating dealloyed bimetallic PtM (M = Ni or Co) catalysts under oxygen reduction reaction (ORR) conditions obtained using X-ray absorption near edge spectroscopy (XANES). The results reveal a complex Sabatier catalysis behavior and indicate the active ORR mechanism changes with Pt-O bond weakening from the O dissociative mechanism, to the peroxyl mechanism, and finally to the hydrogen peroxide mechanism. An important rearrangement of the OOH binding site, an intermediate in the ORR, enables facile H addition to OOH and faster O-O bond breaking on 111 faces at optimal Pt-O bonding strength, such as that occurring in dealloyed PtM core-shell nanoparticles. This rearrangement is identified by previous DFT calculations and confirmed from in situ measured OOH adsorption coverages during the ORR. The importance of surface structural effects and 111 ordered faces is confirmed by the higher specific ORR rates on solid core vs porous multi-core nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501392PMC
http://dx.doi.org/10.1149/2.1071412jesDOI Listing

Publication Analysis

Top Keywords

ooh binding
8
binding site
8
orr
6
role ooh
4
site surface
4
surface structure
4
structure orr
4
orr activities
4
activities experimentally
4
experimentally observed
4

Similar Publications

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine-containing RuO2 (RuO2-Cl) and pure RuO2 catalysts with similar morphology and crystallinity.

View Article and Find Full Text PDF

Electronic Buffering Mechanism Enhances Stability and Water Oxidation Efficiency of CeO2@NiFe-LDH.

Chemistry

December 2024

Shanghai University of Electric Power, College of Environmental and Chemical Engineering, 2103 Pingliang Road, Yangpu District,, 200090, Shanghai, CHINA.

Nickel-iron layered double hydroxide shows significant promise as an electrocatalyst in facilitating oxygen evolution reactions. But its development is hindered by low conductivity and insufficient cycling stability. Herein, the synthesis of a hierarchically structured heterostructure catalyst, CeO2@NiFe LDH, is reported through a straightforward two-step process involving hydrothermal treatment.

View Article and Find Full Text PDF

Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!