Objective: To perform a post-outbreak prospective study of the Pseudomonas aeruginosa contamination at the faucets (water, aerator and drain) by culture and quantitative polymerase chain reaction (qPCR) and to assess environmental factors influencing occurrence

Setting: A 450-bed pediatric university hospital in Montreal, Canada

Methods: Water, aerator swab, and drain swab samples were collected from faucets and analyzed by culture and qPCR for the post-outbreak investigation. Water microbial and physicochemical parameters were measured, and a detailed characterization of the sink environmental and design parameters was performed.

Results: The outbreak genotyping investigation identified drains and aerators as the source of infection. The implementation of corrective measures was effective, but post-outbreak sampling using qPCR revealed 50% positivity for P. aeruginosa remaining in the water compared with 7% by culture. P. aeruginosa was recovered in the water, the aerator, and the drain in 21% of sinks. Drain alignment vs the faucet and water microbial quality were significant factors associated with water positivity, whereas P. aeruginosa load in the water was an average of 2 log higher for faucets with a positive aerator.

Conclusions: P. aeruginosa contamination in various components of sink environments was still detected several years after the resolution of an outbreak in a pediatric university hospital. Although contamination is often not detectable in water samples by culture, P. aeruginosa is present and can recover its culturability under favorable conditions. The importance of having clear maintenance protocols for water systems, including the drainage components, is highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1017/ice.2015.168DOI Listing

Publication Analysis

Top Keywords

water aerator
12
water
10
post-outbreak investigation
8
pseudomonas aeruginosa
8
quantitative polymerase
8
polymerase chain
8
chain reaction
8
environmental factors
8
aeruginosa contamination
8
aerator drain
8

Similar Publications

Study on Preparation and Performance of Aerated Concrete Using Spodumene Mining Residue as Silicious Material.

Materials (Basel)

February 2025

State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.

In this research, the spodumene mining residue was used as siliceous material, completely replacing quartz sand, to prepare aerated concrete. The mechanical properties, pore structure, hydration characteristics of the aerated concrete, and the spodumene mining residue-cement paste interaction mechanism were studied by orthogonal experiment, X-ray diffraction, Fourier-Transform Infrared Spectroscopy, thermogravimetry, and mercury-injection test methods. The result showed that the water-cement ratio significantly affected the mechanical properties and dry density of the aerated concrete.

View Article and Find Full Text PDF

Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions.

Water Res

February 2025

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution.

View Article and Find Full Text PDF

Methane removal is an essential step in drinking water production from methane-rich groundwaters. Conventional aeration-based stripping results in significant direct methane emissions, contributing up to one-third of a treatment plant's total carbon footprint. To address this, a full-scale trickling filter was operated for biological methane oxidation upstream of a submerged sand filter, and its performance was compared to a conventional aeration-submerged sand filtration set-up.

View Article and Find Full Text PDF

Dynamically predicting nitrous oxide emissions in a full-scale industrial activated sludge reactor under multiple aeration patterns and COD/N ratios.

Water Res

February 2025

Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 228 A, 2800 Kgs. Lyngby, Denmark.

The use of digital tools has become essential for quantifying and predicting greenhouse gas (GHG) emissions in urban wastewater treatment plants (WWTPs), enabling the development of operational regimes with a high probability of achieving net-zero targets. However, comprehensive studies documenting validation of model predictions-such as effluent quality, process economics, and emission factors-remain scarce within full-scale industrial settings. This paper aims to develop a decision support tool (DST) for (dynamically) predicting nitrous oxide (NO) emissions in full-scale industrial activated sludge reactors (ASRs) and suggesting mitigation strategies.

View Article and Find Full Text PDF

Tolerant and highly-permeable membrane aerated biofilm reactor enabled by selective armored membrane.

Water Res

February 2025

State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Membrane aerated biofilm reactor (MABR) is a promising technology for dramatically reducing aeration energy consumption in wastewater treatment. However, the crucial membranes, including microporous hydrophobic membranes and dense membranes, are intolerant to fouling and possess high oxygen transfer resistance respectively, hindering their application potential. Herein, we developed a tolerant and highly-permeable membrane aerated biofilm reactor (THMABR) with a selective armor layer on the membrane to support the biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!