Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maintaining genomic integrity during DNA replication is essential for stem cells. DNA replication origins are licensed by the MCM2-7 complexes, with most of them remaining dormant. Dormant origins (DOs) rescue replication fork stalling in S phase and ensure genome integrity. However, it is not known whether DOs exist and play important roles in any stem cell type. Here, we show that embryonic stem cells (ESCs) contain more DOs than tissue stem/progenitor cells such as neural stem/progenitor cells (NSPCs). Partial depletion of DOs does not affect ESC self-renewal but impairs their differentiation, including toward the neural lineage. However, reduction of DOs in NSPCs impairs their self-renewal due to accumulation of DNA damage and apoptosis. Furthermore, mice with reduced DOs show abnormal neurogenesis and semi-embryonic lethality. Our results reveal that ESCs are equipped with more DOs to better protect against replicative stress than tissue-specific stem/progenitor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618655 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2015.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!