Aim: To investigate the effects of 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), an analogue of resveratrol, on human non-small-cell lung cancer (NSCLC) cells in vitro.

Methods: Cell viability of NSCLC A549 cells was determined by MTT assay. Cell apoptosis was evaluated using flow cytometry and TUNEL assay. Cell necrosis was evaluated with LDH assay. The expression of apoptosis- or autophagy-associated proteins was measured using Western blotting. The formation of acidic compartments was detected using AO staining, neutral red staining and Lysotracker-Red staining. LC3 punctae were analyzed with fluorescence microscopy.

Results: Treatment with 3,4,4'-THS (10-80 μmol/L) concentration-dependently inhibited the cell viability. It did not cause cell necrosis, but induced apoptosis accompanied by up-regulation of cleavaged PARP, caspase3/9 and Bax, and by down-regulation of Bcl-2 and surviving. It also increased the formation of acidic compartments, LC3-II accumulation and GFP-LC3 labeled autophagosomes in the cells. It inhibited the mTOR-dependent pathway, but did not impair autophagic flux. 3,4,4'-THS-induced cell death was enhanced by the autophagy inhibitors 3-MA (5 mmol/L) or Wortmannin (2 μmol/L). Moreover, 3,4,4'-THS treatment elevated the ROS levels in the cells, and co-treatment with 3-MA further elevated the ROS levels. 3,4,4'-THS-induced apoptosis and autophagy in the cells was attenuated by NAC (10 mmol/L)Conclusion:3,4,4'-THS induces both apoptosis and autophagy in NSCLC A549 cells in vitro. Autophagy inhibitors promote 3,4,4'-THS-induced apoptosis of A549 cells, thus combination of 3,4,4'-THS and autophagy inhibitor provides a promising strategy for NSCLC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814205PMC
http://dx.doi.org/10.1038/aps.2015.46DOI Listing

Publication Analysis

Top Keywords

apoptosis autophagy
12
a549 cells
12
induces apoptosis
8
human non-small-cell
8
non-small-cell lung
8
lung cancer
8
cells
8
cells vitro
8
cell viability
8
nsclc a549
8

Similar Publications

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Despite N-methyladenosine (mA) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an mA demethylase, on hepatic ischemia-reperfusion injury (IRI). Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential.

J Inflamm Res

January 2025

Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People's Republic of China.

Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!