Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function.

Immunology

MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK.

Published: October 2015

Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582961PMC
http://dx.doi.org/10.1111/imm.12507DOI Listing

Publication Analysis

Top Keywords

treg cells
16
foxp3+ regulatory
8
inflammation-associated genes
4
genes risks
4
risks benefits
4
benefits foxp3+
4
regulatory t-cell
4
t-cell function
4
function foxp3+
4
treg
4

Similar Publications

Alcohol drinking leads to sex-dependent differentiation of T cells.

Eur J Trauma Emerg Surg

January 2025

Department of Trauma Surgery and Orthopedics, Goethe University, University Hospital, Frankfurt, Germany.

Objective: Global per capita alcohol consumption is increasing, posing significant socioeconomic and medical challenges also due to alcohol-related traumatic injuries but also its biological effects. Trauma as a leading cause of death in young adults, is often associated with an increased risk of complications, such as sepsis and multiple organ failure, due to immunological imbalances. Regulatory T cells play a crucial role in maintaining immune homeostasis by regulating the inflammatory response.

View Article and Find Full Text PDF

A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes.

J Am Chem Soc

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.

View Article and Find Full Text PDF

Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.

View Article and Find Full Text PDF

Background: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!