Objective: The aim of this work was to determine whether atrophy of specific retinal layers and brain substructures are associated over time, in order to further validate the utility of optical coherence tomography (OCT) as an indicator of neuronal tissue damage in patients with multiple sclerosis (MS).
Methods: Cirrus high-definition OCT (including automated macular segmentation) was performed in 107 MS patients biannually (median follow-up: 46 months). Three-Tesla magnetic resonance imaging brain scans (including brain-substructure volumetrics) were performed annually. Individual-specific rates of change in retinal and brain measures (estimated with linear regression) were correlated, adjusting for age, sex, disease duration, and optic neuritis (ON) history.
Results: Rates of ganglion cell + inner plexiform layer (GCIP) and whole-brain (r = 0.45; p < 0.001), gray matter (GM; r = 0.37; p < 0.001), white matter (WM; r = 0.28; p = 0.007), and thalamic (r = 0.38; p < 0.001) atrophy were associated. GCIP and whole-brain (as well as GM and WM) atrophy rates were more strongly associated in progressive MS (r = 0.67; p < 0.001) than relapsing-remitting MS (RRMS; r = 0.33; p = 0.007). However, correlation between rates of GCIP and whole-brain (and additionally GM and WM) atrophy in RRMS increased incrementally with step-wise refinement to exclude ON effects; excluding eyes and then patients (to account for a phenotype effect), the correlation increased to 0.45 and 0.60, respectively, consistent with effect modification. In RRMS, lesion accumulation rate was associated with GCIP (r = -0.30; p = 0.02) and inner nuclear layer (r = -0.25; p = 0.04) atrophy rates.
Interpretation: Over time GCIP atrophy appears to mirror whole-brain, and particularly GM, atrophy, especially in progressive MS, thereby reflecting underlying disease progression. Our findings support OCT for clinical monitoring and as an outcome in investigative trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703093 | PMC |
http://dx.doi.org/10.1002/ana.24487 | DOI Listing |
Lens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Ophthalmology, Novartis Biomedical Research, Cambridge, MA, USA.
Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Vitreoretinal Surgery Department, Hugo Chavez Hospital, Turmus Ayya, State of Palestine.
Background: This case report describes a rare case of Coats disease in adult female patient with preserved vision after intravitreal Aflibercept injection and laser photocoagulation.
Case Presentation: A female patient of Asian Palestinian descent, aged 20, exhibited a progressive and painless deterioration in the vision of her left eye over a period of two weeks. She exhibited no additional ocular symptoms.
Nat Neurosci
January 2025
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.
View Article and Find Full Text PDFObjective: To investigate the long-term impact of half-fluence photodynamic therapy (PDT) on chorioretinal architecture in chronic central serous chorioretinopathy (cCSCR) through novel choroidal vascularity index (CVI) versus previously established subfoveal choroidal thickness (SFCT).
Methods: This post-hoc analysis included prospectively collected swept-source optical coherence tomography (SS-OCT) images of a total of 29 cCSCR and fellow eyes (FE), acquired before, one and 12 months after PDT. CVI, total choroidal area (TCA), luminal area (LA) and stromal area (SA) were calculated using validated binarization technique.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!