Objective: To describe and compare the mortality associated with nosocomial pneumonia due to Pseudomonas aeruginosa (Pa-NP) according to pneumonia classification (community-onset pneumonia [COP], hospital-acquired pneumonia [(HAP], and ventilator-associated pneumonia [VAP]).

Design: We conducted a retrospective cohort study of adults with Pa-NP. We compared mortality for Pa-NP among patients with COP, HAP, and VAP and used logistic regression to identify risk factors for hospital mortality and inappropriate initial antibiotic therapy (IIAT).

Setting: Twelve acute care hospitals in 5 countries (United States, 3; France, 2; Germany, 2; Italy, 2; and Spain, 3).

Patients/participants: A total of 742 patients with Pa-NP.

Results: Hospital mortality was greater for those with VAP (41.9%) and HAP (40.1%) compared with COP (24.5%) (P<.001). In multivariate analyses, independent predictors of hospital mortality differed by pneumonia classification (COP: need for mechanical ventilation and intensive care; HAP: multidrug-resistant isolate; VAP: IIAT, increasing age, increasing Charlson comorbidity score, bacteremia, and use of vasopressors). Presence of multidrug resistance was identified as an independent predictor of IIAT for patients with COP and HAP, whereas recent antibiotic administration was protective in patients with VAP.

Conclusions: Among patients with Pa-NP, pneumonia classification identified patients with different risks for hospital mortality. Specific risk factors for hospital mortality also differed by pneumonia classification and multidrug resistance appeared to be an important risk factor for IIAT. These findings suggest that pneumonia classification for P. aeruginosa identifies patients with different mortality risks and specific risk factors for outcome and IIAT.

Download full-text PDF

Source
http://dx.doi.org/10.1017/ice.2015.167DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
nosocomial pneumonia
8
pneumonia classification
8
hospital mortality
8
pneumonia
7
aeruginosa nosocomial
4
pneumonia impact
4
impact pneumonia
4
classification objective
4
objective describe
4

Similar Publications

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.

View Article and Find Full Text PDF

Nursing home acquired pneumonia (NHAP), and its subset - aspiration-associated pneumonia, is a leading cause of morbidity and mortality among residents in long-term care facilities (LTCFs). Understanding colonization dynamics of respiratory pathogens in LTCF residents is essential for effective infection control. This study examines the longitudinal trends in prevalence, persistence, bacterial load, and co-colonization patterns of five respiratory pathogens in three LTCFs in Phoenix, Arizona.

View Article and Find Full Text PDF

Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance.

Front Immunol

December 2024

Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.

Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.

View Article and Find Full Text PDF

Background: Healthcare-associated infections (HAI) caused by multidrug-resistant organisms have emerged as a significant global issue, posing substantial challenges to healthcare systems. Low- and intermediate-level disinfectants are extensively utilized for cleaning and disinfecting surfaces in hospitals to mitigate environmental transmission of HAI. Therefore, the need for more effective and environmentally safe disinfectants is increasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!