This review presents recent evidence implicating microRNAs (miRNAs) in the beneficial effects of resveratrol (trihydroxystilbene), a nonflavonoid plant polyphenol, with emphasis on its anti-inflammatory effects. Many diseases and pathologies have been linked, directly or indirectly, to inflammation. These include infections, injuries, atherosclerosis, diabetes mellitus, obesity, cancer, osteoarthritis, age-related macular degeneration, demyelination, and neurodegenerative diseases. Resveratrol can both decrease the secretion of proinflammatory cytokines (e.g., IL-6, IL-8, and TNF-α) and increase the production of anti-inflammatory cytokines; it also decreases the expression of adhesion proteins (e.g., ICAM-1) and leukocyte chemoattractants (e.g., MCP-1). Resveratrol's primary targets appear to be the transcription factors AP-1 and NF-κB, as well as the gene COX2. Although no mechanistic link between any particular miRNA and resveratrol has been identified, resveratrol effects depend at least in part upon the modification of the expression of a variety of miRNAs that can be anti-inflammatory (e.g., miR-663), proinflammatory (e.g., miR-155), tumor suppressing (e.g., miR-663), or oncogenic (e.g., miR-21).

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.12819DOI Listing

Publication Analysis

Top Keywords

resveratrol
5
exploring ways
4
ways regulation
4
regulation resveratrol
4
resveratrol involving
4
involving mirnas
4
mirnas emphasis
4
emphasis inflammation
4
inflammation review
4
review presents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!