Single-cell technologies have immense potential to shed light on molecular and biological processes that drive human diseases. Mass cytometry (or Cytometry by Time Of Flight mass spectrometry, CyTOF) has already been employed in clinical studies to comprehensively survey patients' circulating immune system. As interest in the "bedside" application of mass cytometry is growing, the delineation of relevant methodological issues is called for. This report uses a newly generated dataset to discuss important methodological considerations when mass cytometry is implemented in a clinical study. Specifically, the use of whole blood samples versus peripheral blood mononuclear cells (PBMCs), design of mass-tagged antibody panels, technical and analytical implications of sample barcoding, and application of traditional and unsupervised approaches to analyze high-dimensional mass cytometry datasets are discussed. A mass cytometry assay was implemented in a cross-sectional study of 19 women with a history of term or preterm birth to determine whether immune traits in peripheral blood differentiate the two groups in the absence of pregnancy. Twenty-seven phenotypic and 11 intracellular markers were simultaneously analyzed in whole blood samples stimulated with lipopolysaccharide (LPS at 0, 0.1, 1, 10, and 100 ng mL(-1)) to examine dose-dependent signaling responses within the toll-like receptor 4 (TLR4) pathway. Complementary analyses, grounded in traditional or unsupervised gating strategies of immune cell subsets, indicated that the prpS6 and pMAPKAPK2 responses in classical monocytes are accentuated in women with a history of preterm birth (FDR<1%). The results suggest that women predisposed to preterm birth may be prone to mount an exacerbated TLR4 response during the course of pregnancy. This important hypothesis-generating finding points to the power of single-cell mass cytometry to detect biologically important differences in a relatively small patient cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758855 | PMC |
http://dx.doi.org/10.1002/cyto.a.22720 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Objective: Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are common neurodegenerative diseases with distinct but overlapping pathogenic mechanisms. The clinical similarities between these diseases often result in high misdiagnosis rates, leading to serious consequences. Peripheral blood mononuclear cells (PBMCs) are easy to collect and can accurately reflect the immune characteristics of both DLB and AD.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China. Electronic address:
Background: FcγRI, a pivotal cell surface receptor, is implicated in diverse immune responses and is ubiquitously expressed on numerous immune cells. However, its role in intracellular bacterial infections remains understudied.
Methods: Wild-type (WT) and FcγRI knockout (FcγRI-KO) mice were inoculated intranasally with a specific dose of C.
ACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Alzheimers Dement
December 2024
University of Southampton, Southampton, United Kingdom.
Background: The neuroimmune response, characterised by the proliferation and activation of microglial cells, is a driver of Alzheimer's disease (AD). However, the extent of immune cell infiltration and interactions in the human AD brain are yet to be established in detail. While microglial cells are at the centre of this neuroimmune response, recent research has explored the possibility of peripheral immune cell involvement, typically focusing on T-cell infiltration.
View Article and Find Full Text PDFCancer Commun (Lond)
January 2025
Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!