Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer.

Mol Oncol

Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710, South Korea. Electronic address:

Published: November 2015

AI Article Synopsis

  • β-catenin is a crucial part of the WNT signaling pathway and is usually regulated through a process called ubiquitin-dependent proteolysis.
  • USP4 was identified as a deubiquitinating enzyme that stabilizes β-catenin and boosts its ability to promote transcription.
  • Increased levels of USP4 and β-catenin were found in colon cancer tissues, suggesting that targeting USP4 could be a promising strategy for cancer treatment.

Article Abstract

β-catenin is a key signal transducer in the canonical WNT pathway and is negatively regulated by ubiquitin-dependent proteolysis. Through screening of various deubiquitinating enzymes (DUBs), we identified ubiquitin specific protease 4 (USP4) as a candidate for β-catenin-specific DUB. The effects of USP4 overexpression or knockdown suggested that USP4 positively controls the stability of β-catenin and enhances β-catenin-regulated transcription. Domain mapping results revealed that the C-terminal catalytic domain is responsible for β-catenin binding and nuclear transport. Examination of colon cancer tissues from patients revealed a correlation between elevated expression levels of USP4 and β-catenin. Consistent with this correlation, USP4 knockdown in HCT116, a colon cancer cell line, reduced invasion and migration activity. These observations indicate that USP4 acts as a positive regulator of the WNT/β-catenin pathway by deubiquitination and facilitates nuclear localization of β-catenin. Therefore, we propose that USP4 is a potential target for anti-cancer therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528720PMC
http://dx.doi.org/10.1016/j.molonc.2015.06.006DOI Listing

Publication Analysis

Top Keywords

ubiquitin specific
8
specific protease
8
colon cancer
8
usp4
7
β-catenin
5
protease positively
4
positively regulates
4
regulates wnt/β-catenin
4
wnt/β-catenin signaling
4
signaling colorectal
4

Similar Publications

Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation.

View Article and Find Full Text PDF

Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML.

Cancer Biol Ther

December 2025

National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy.

In Vitro Cell Dev Biol Anim

January 2025

Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, P.R. China.

Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear.

View Article and Find Full Text PDF

TRIM29 reverses lenvatinib resistance in liver cancer cells by ubiquitinating and degrading YBX1 to inhibit the PI3K/AKT pathway.

Transl Oncol

January 2025

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China. Electronic address:

Sorafenib and lenvatinib are frontline treatments for advanced hepatocellular carcinoma (HCC). While lenvatinib surpasses sorafenib in efficacy and tolerability, resistance remains a significant clinical challenge. Recent research highlights the potential of TRIM family proteins in modulating lenvatinib resistance in HCC, necessitating a deeper understanding of their specific mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!