To guide experimental work on the search for Majorana zero-energy modes, we calculate the superconducting pairing symmetry of a three-dimensional topological insulator in combination with an s-wave superconductor. We show how the pairing symmetry changes across different topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient to realise a Majorana zero-energy mode useful for quantum computation. Our main result is the relation between odd-frequency pairing and Majorana zero energy modes by using Green functions techniques in three-dimensional topological insulators in the so-called Majorana regime. We discuss thereafter how the pairing relations in the different regimes can be observed in the tunneling conductance of an s-wave proximised three-dimensional topological insulator. We discuss the necessity to incorporate a ferromagnetic insulator to localise the zero-energy bound state to the interface as a Majorana mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/27/31/315701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!