Interaction of gaseous aromatic and aliphatic compounds in thermophilic biofilters.

J Hazard Mater

School of Environmental Science and Engineering, Tianjin University, Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China. Electronic address:

Published: December 2015

Two thermophilic biofilters were applied in treating a mixture of gaseous aromatic (benzene) and aliphatic compounds (hexane) to evaluate the interaction of the compounds. The performance of the biofilters was investigated in terms of removal efficiencies, elimination capacity, kinetic analysis, interaction indices, and microbial metabolic characteristics. Results showed that the removal performance of benzene was unaffected by the addition of hexane. The removal efficiencies of benzene were maintained at approximately 80% and the biodegradation rate constant was maintained at 120 h(-1). However, the removal efficiencies of hexane decreased significantly from 60% to 20% and the biodegradation rate constant exhibited a distinct decrease from 93.59 h(-1) to 56.32 h(-1). The interaction index of benzene with the addition of hexane was -0.029, which indicated that hexane had little effect on the degradation of benzene. By contrast, the interaction index of hexane by benzene was -0.557, which showed that benzene inhibited the degradation of hexane significantly. Similar conclusions were obtained about the substrate utilization. Moreover, the utilization degree of carbon sources and the microbial metabolic activities in the biofilter treating hexane were significantly improved with the addition of benzene, whereas the addition of hexane had a slight effect on the microbial communities in the biofilter treating benzene. Conclusions could be obtained that when mixtures of benzene and hexane were treated using biofilters, the degradation of benzene, which was more easily degradable, was dominant and unaffected; whereas the degradation of hexane, which was less easily degradable, was inhibited because of the changing of microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.07.005DOI Listing

Publication Analysis

Top Keywords

removal efficiencies
12
addition hexane
12
benzene
11
hexane
11
gaseous aromatic
8
aliphatic compounds
8
thermophilic biofilters
8
microbial metabolic
8
biodegradation rate
8
rate constant
8

Similar Publications

The production of disulfide-containing recombinant proteins often requires refolding of inclusion bodies before purification. A pre-refolding purification step is crucial for effective refolding because impurities in the inclusion bodies interfere with refolding and subsequent purification. This study presents a new pre-refolding procedure using a reversible S-cationization technique for protein solubilization and purification by reversed-phase high performance liquid chromatography.

View Article and Find Full Text PDF

Robotic-assisted costectomy using a Gigli saw for fibrous dysplasia.

J Cardiothorac Surg

January 2025

Department of Thoracic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.

Background: Fibrous dysplasia (FD) is the most common benign tumor of the ribs, with surgical resection being the preferred treatment modality for rib FD, leading to enhanced quality of life and favorable outcomes. The complexity of surgical intervention varies depending on the location of costal FD, presenting challenges for both open surgical and thoracoscopic approaches. In this study, we present a novel technique for three-port robotic-assisted costectomy utilizing a Gigli saw, detailing our initial findings and outcomes.

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

Hidden Threat in Turbid Waters: Quantifying and Modeling the Bioaccumulation and Risks of Particulate Metals to Clams.

Environ Pollut

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!